If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+116x-120=0
a = 28; b = 116; c = -120;
Δ = b2-4ac
Δ = 1162-4·28·(-120)
Δ = 26896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26896}=164$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-164}{2*28}=\frac{-280}{56} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+164}{2*28}=\frac{48}{56} =6/7 $
| 9x+-3.2=6.8+8x | | 55.00=89.70x+503.50 | | 2.446x=30.692 | | 8x–1=4x+7 | | 6-4x-5=4x+12-2-x | | 13x=74 | | 22=x/7+6 | | 55.00=89.702x+503.50 | | 1-x=-4x+13 | | 1/2(x+5)=15 | | 20.57=x+1.446x-10.122 | | 1/2(x+5=15 | | 9a/3a=5 | | -8(-7r-1)=120 | | 6x^2+x-27=0 | | 3/5(5x-10)=-1 | | 10-x=-2x+9 | | -4(-2x-3)=-12 | | -5(-6-3b)+6=141 | | 9a^/3a=0 | | y-5-2=y | | 6n–5n=17 | | -15=3+9x | | 5x=11-2 | | 2/3x-3(x+1)=-2x-1/3(6-x) | | 0.22(x+4)=0.2+2.3 | | 4^x-4^x-1=96 | | 6x=4=6x+4 | | 20.72=x+(2.47)(x-7)*(1-0.4) | | 21w-14+18-26w=3w-18 | | n/8=11/5= | | 2x+3(x+4)=10x |